Принцип работы двигателя внутреннего сгорания автомобиля. Принцип работы двигателя внутреннего сгорания

Современный автомобиль, чаще всего, приводится в движение . Таких двигателей существует огромное множество. Различаются они объемом, количеством цилиндров, мощностью, скоростью вращения, используемым топливом (дизельные, бензиновые и газовые ДВС). Но, принципиально, внутреннего сгорания, похоже.

Как работает двигатель и почему называется четырехтактным двигателем внутреннего сгорания? Про внутреннее сгорание понятно. Внутри двигателя сгорает топливо. А почему 4 такта двигателя, что это такое? Действительно, бывают и двухтактные двигатели. Но на автомобилях они используются крайне редко.

Четырехтактным двигатель называется из-за того, что его работу можно разделить на четыре, равные по времени, части . Поршень четыре раза пройдет по цилиндру – два раза вверх и два раза вниз. Такт начинается при нахождении поршня в крайней нижней или верхней точке. У автомобилистов-механиков это называется верхняя мертвая точка (ВМТ) и нижняя мертвая точка (НМТ) .

Первый такт - такт впуска

Первый такт, он же впускной, начинается с ВМТ (верхней мертвой точки). Двигаясь вниз, поршень всасывает в цилиндр топливовоздушную смесь . Работа этого такта происходит при открытом клапане впуска . Кстати, существует много двигателей с несколькими впускными клапанами. Их количество, размер, время нахождения в открытом состоянии может существенно повлиять на мощность двигателя. Есть двигатели, в которых, в зависимости от нажатия на педаль газа, происходит принудительное увеличение времени нахождения впускных клапанов в открытом состоянии. Это сделано для увеличения количества всасываемого топлива, которое, после возгорания, увеличивает мощность двигателя. Автомобиль, в этом случае, может гораздо быстрее ускориться.

Второй такт - такт сжатия

Следующий такт работы двигателя – такт сжатия . После того как поршень достиг нижней точки, он начинает подниматься вверх, тем самым, сжимая смесь, которая попала в цилиндр в такт впуска. Топливная смесь сжимается до объемов камеры сгорания. Что это за такая камера? Свободное пространство между верхней частью поршня и верхней частью цилиндра при нахождении поршня в верхней мертвой точке называется камерой сгорания. Клапаны, в этот такт работы двигателя закрыты полностью. Чем плотнее они закрыты, тем сжатие происходит качественнее. Большое значение имеет, в данном случае, состояние поршня, цилиндра, поршневых колец. Если имеются большие зазоры, то хорошего сжатия не получится, а соответственно, мощность такого двигателя будет гораздо ниже. Компрессию можно проверить специальным прибором. По величине компрессии можно сделать вывод о степени износа двигателя.

Третий такт - рабочий ход

Третий такт – рабочий , начинается с ВМТ. Рабочим он называется неслучайно. Ведь именно в этом такте происходит действие, заставляющее автомобиль двигаться. В этом такте в работу вступает . Почему эта система так называется? Да потому, что она отвечает за поджигание топливной смеси, сжатой в цилиндре, в камере сгорания. Работает это очень просто – свеча системы дает искру. Справедливости ради, стоит заметить, что искра выдается на свече зажигания за несколько градусов до достижения поршнем верхней точки. Эти градусы, в современном двигателе, регулируются автоматически «мозгами» автомобиля.

После того как топливо загорится, происходит взрыв – оно резко увеличивается в объеме, заставляя поршень двигаться вниз . Клапаны в этом такте работы двигателя, как и в предыдущем, находятся в закрытом состоянии.

Четвертый такт - такт выпуска

Четвертый такт работы двигателя, последний – выпускной . Достигнув нижней точки, после рабочего такта, в двигателе начинает открываться выпускной клапан . Таких клапанов, как и впускных, может быть несколько. Двигаясь вверх, поршень через этот клапан удаляет отработавшие газы из цилиндра – вентилирует его. От четкой работы клапанов зависит степень сжатия в цилиндрах, полное удаление отработанных газов и необходимое количество всасываемой топливно-воздушной смеси.

После четвертого такта наступает черед первого. Процесс повторяется циклически . А за счет чего происходит вращение – работа двигателя внутреннего сгорания все 4 такта, что заставляет поршень подниматься и опускаться в тактах сжатия, выпуска и впуска? Дело в том, что не вся энергия, получаемая в рабочем такте, направляется на движение автомобиля. Часть энергии идет на раскручивание маховика. А он, под действием инерции, крутит коленчатый вал двигателя, перемещая поршень в период «нерабочих» тактов.

Все мы передвигаемся на автомобилях совершенно разных марок и моделей. Но, немногие из нас даже задумываются над тем, как устроен двигатель нашего автомобиля. По большому счёту, знать на все 100% устройство двигателя автомобиля и не обязательно. Ведь мы все пользуемся, например, мобильными телефонами, но это не означает, что мы обязаны быть гениями радиоэлектроники. Есть кнопка "Вкл", нажал и говори. Но с автомобилем немного другая история.

Ведь неисправный телефон – это всего лишь отсутствие связи с друзьями. А неисправный двигатель автомобиля – это наша жизнь и здоровье. От правильного обслуживания двигателя автомобиля зависят многие моменты движения автомобиля вообще и безопасности людей в частности. Поэтому, скорее всего, будет правильно уделить десять минут, чтобы понять из чего состоит двигатель автомобиля и принцип работы двигателя.

Пара шагов в историю создания двигателя автомобиля

Мотор (двигатель) в переводе с латыни motor , значит – приводящий в движение. В современном понимании, двигатель – это устройство, которое преобразует какую-либо энергию в механическую. В автомобилестроение наиболее распространенными двигателями являются ДВС (двигатели внутреннего сгорания) различных типов. Годом рождения первого ДВС считается 1801 г. тогда француз Филипп Лебон запатентовал первый двигатель, работающий на светильном газе. Затем были Жан Этьен Ленуар и Август Отто. Именно Август Отто в 1877 г. получил патент на двигатель с четырёхтактным циклом работы. И до сегодняшнего дня работа двигателя автомобиля, в основе своей работает по этому принципу.

В 1872 г. американцем Брайтоном был представлен первый двигатель на жидком топливе – керосине. Попытка была неудачной. Керосин не хотел активно взрываться внутри цилиндров. А в 1882 г. появился двигатель Готлиба Даймлера, бензиновый и работоспособный.

А теперь давайте разберемся какие все таки бывают типы двигателя автомобиля и к какому типу, прежде всего, можно отнести ваш автомобиль.

Какой у вас тип двигателя автомобиля?

С учетом того, что наиболее массовым в автомобилестроении является ДВС, рассмотрим, какие же типы двигателей установлены на наших автомобилях. ДВС не является самым совершенным типом двигателя, но благодаря своей 100% автономности, именно он и применяется в большинстве современных авто. Традиционные типы двигателей автомобиля:

  • Бензиновые двигатели . Делятся на инжекторные и карбюраторные. Существуют разные типы карбюраторов и системы впрыска. Вид топлива – бензин.
  • Дизельные двигатели . Дизельное топливо попадает в цилиндры через форсунки. Преимуществом дизельных двигателей является то, что им не нужно электричество для работы. Только для запуска двигателя.
  • Газовые двигатели . Топливом может служить, как сжиженные и сжатые природные газы, так и генераторные газы, полученные путем преобразования твердого топлива (уголь, дерево, торф) в газообразное.

Разбираем устройство и принцип работы двигателя автомобиля

Как работает двигатель автомобиля? При первом взгляде на разрез двигателя, несведущему человеку хочется убежать. Настолько всё кажется сложным и запутанным. На самом деле, при более глубоком изучении, строение двигателя автомобиля просто и понятно для того, чтобы знать принцип его работы. Знать, и при необходимости применять эти знания в жизни.

  • Блок цилиндров – его можно назвать рамой или корпусом двигателя. Внутри блока устроена система каналов для смазки и охлаждения двигателя. Он служит основой для навесного оборудования: головка блока цилиндров, картер и т.д.
  • Поршень – пустотелый металлический стакан. Верхняя часть поршня (юбка) имеет специальные канавки для поршневых колец.
  • Поршневые кольца . Верхние кольца – компрессионные, для обеспечения высокой степени сжатия воздушно-топливной смеси (компрессия). Нижние кольца – маслосъёмные. Кольца выполняют две функции: обеспечивают герметичность камеры сгорания и играют роль уплотнителей для того, чтобы масло не попадало в камеру сгорания.
  • Кривошипно-шатунный механизм . Передаёт возвратно-поступательную энергию движения поршня на коленвал.
  • Принцип работы ДВС достаточно прост. Из форсунок топливо подается в камеру сгорания и обогащается там воздухом. Искра от свечи зажигания воспламеняет воздушно-топливную смесь и происходит взрыв. Образовавшиеся газы толкают поршень вниз, тем самым заставляя его передавать своё поступательное движение коленвалу. Коленвал, в свою очередь, передаёт вращательное движение трансмиссии. Далее система шестерён передаёт движение колесам.

А уже колеса автомобиля везут несущий кузов вместе с нами в том направлении, куда нам необходимо. Вот такой принцип работы двигателя, мы уверены, будет вам понятен. И вы будете знать, что ответить, когда в автосервисе недобросовестные работники скажут, что вам нужно поменять компрессию, но на складе осталась одна, и та - импортная. Удачи вам в понимании устройства и принципа работы двигателя автомобиля.

ДВС - это двигатель, работающий по принципу сжигания различного топлива непосредственно внутри самого агрегата. В отличие от двигателей другого типа, ДВС лишены: любых элементов передающих тепло для дальнейшего преобразования в механическую энергию, преобразование происходит непосредственно от сгорания топлива; значительно компактнее; имеют малый вес относительно агрегатов другого типа со сравнимой мощностью; требуют использования определенного топлива с жесткими характеристиками температуры горения, степени испаряемости, октановым числом и т. д.

В автомобилестроении применяются четырехтактные моторы:

1. Впуск;

2. Сжатие;

3. Рабочий ход;

4. Выпуск.
Но существуют и двухтактные версии двигателей внутреннего сгорания, но в современном мире, они имеют ограниченное применение.

В данной статье будут рассмотрены только моторы, устанавливающиеся на автомобили.

Разновидности двигателей по использующемуся топливу

Бензиновые моторы, как понятно из названия используют в качестве топлива для работы - бензин с различным октановым числом, и имеют систему принудительного поджига топливной смеси при помощи электрической искры.

Могут разделяться по типу впуска на карбюраторные и инжекторные. Карбюраторные моторы уже пропадают из производства из-за сложности в точной настройке, высокого потребления бензина, неэффективности смешивания топливной смеси и несоответствия современным жестким экологическим требованиям. В таких моторах, смешивание горючей смеси начинается в камерах карбюратора и заканчивается по пути во впускном коллекторе.


Инжекторные агрегаты развиваются большими темпами, и система впрыска топлива улучшается с каждым поколением. Первые инжектора имели «моновпрыск» с единственной форсункой. По сути, это была модернизация карбюраторных моторов. Со временем, на большинстве агрегатов, начали использоваться системы с отдельными форсунками на каждый цилиндр. Использование форсунок в системе впуска, позволило точнее контролировать пропорции топлива и воздуха в разных режимах работы агрегата, снизить расход топлива, увеличить качество топливной смеси, увеличить мощность и экологичность силовых агрегатов.

Современные форсунки, устанавливающиеся на силовые агрегаты с системой непосредственного впрыска топлива в цилиндры, способны производить несколько отдельных впрысков топлива за один такт. Это позволяет еще улучшить качество топливной смеси и добиваться максимальной отдачи энергии от используемого количества бензина. То есть, еще больше увеличилась экономия и производительность моторов.


Дизельные агрегаты - используют принцип воспламенения смеси дизельного топлива и воздуха при нагреве от сильного сжатия. При этом, в дизельных агрегатах не используются системы принудительного поджига. Данные моторы имеют ряд преимуществ перед бензиновыми, в первую очередь - это экономность топлива (до 20%), при сравнительной мощности. Топливо меньше расходуется из-за большей степени сжатия в цилиндрах, что улучшает характеристики горения и отдачи энергии топливной смеси, а следовательно, и топлива необходимо меньшее количество для достижения таких же результатов. Кроме этого, дизельные агрегаты не используют дроссельные заслонки, что улучшает поступление воздуха в силовой агрегат, что еще уменьшает расход топлива. Дизеля развивают больший крутящий момент, и на более низких оборотах коленчатого вала.

Не обошлось без недостатков. Из-за увеличенной нагрузки на стенки цилиндров, конструкторам пришлось использовать более надежные материалы, и увеличивать размеры конструкции (увеличение веса и удорожание производства). Кроме этого, работа дизельного силового агрегата - громкая из-за особенностей воспламенения топлива. А увеличенная масса деталей не позволяет мотору развивать высокие обороты с такой же скоростью, как и бензиновые, и максимальное значение оборотов коленчатого вала - ниже, чем у бензиновых агрегатов.

Разновидность ДВС по конструкции

Гибридный силовой агрегат

Данный тип автомобиля начала набирать популярность в последние года. Благодаря своей эффективности экономии топлива и увеличению общей мощности автомобиля благодаря комбинированию двух типов агрегатов. По сути, данная конструкция представляет собой два отдельных агрегата - небольшой ДВС (чаще всего дизельный) и электромотор (или несколько электромоторов) с аккумуляторной батареей большой емкости.

Преимущества комбинирования выражаются в способности совмещать энергию двух агрегатов при разгоне, или использование каждого типа двигателя по отдельности, в зависимости от необходимости. К примеру, при движении в городской пробке - может работать только электродвигатель, экономя дизельное топливо. При движении по загородным дорогам, работает ДВС, как более выносливый, мощный и с большим запасом хода агрегат.

При этом, специальная батарея для электромоторов, способна подзарядиться от генератора, или используя систему рекуперации при торможении, что позволяет экономить не только топливо, но и электричество, необходимое для зарядки батареи.

Роторно-поршневой мотор

Роторно-поршневой мотор построен по уникальной схеме движения поршня-ротора, который перемещается внутри цилиндра не по возвратно-поступательной траектории, а вокруг своей оси. Это осуществляется благодаря особой треугольной конструкции поршня и особенному расположению впускных и выпускных отверстий в цилиндре.

Благодаря такой конструкции, двигатель быстро набирает обороты, что увеличивает динамические характеристики автомобиля. Но с развитием классической конструкции ДВС, двигателя Ванкеля начали терять свою актуальность из-за конструктивных ограничений. Принцип движения поршня не позволяет добиться большой степени сжатия топливной смеси, что исключает использование дизельного топлива. А малый ресурс, сложность обслуживания и ремонта, а также - слабые экологические показатели не позволяют автопроизводителям развивать данное направление.

Разновидности силовых агрегатов по компоновке

Из-за необходимости уменьшения веса и габаритов, а также, размещения большего числа поршней в одном агрегате привело к появлению разновидностей моторов по компоновке.

Рядные моторы


Рядный двигатель - это самый классический вариант силового агрегата. В котором все поршни и цилиндры располагаются в один ряд. При этом, современные моторы с рядной компоновкой вмещают в себе не более шести цилиндров. Но именно шестицилиндровые рядные двигатели, имеют наилучшие показатели по уравновешиванию вибрации при работе. Единственный минус - это значительная длина мотора, относительно других компоновок.

V-образные моторы



Данные моторы появились в следствии желания конструкторов уменьшить габариты двигателей, и необходимости разместить более шести поршней в одном блоке. В данных моторах, цилиндры находятся в разных плоскостях. Визуально, расположение цилиндров образует букву «V», откуда и пошло название. Угол между двумя рядами называется углом развала, и варьируется в широком диапазоне, разделяя данный тип моторов на подгруппы.

Оппозитные моторы



Оппозитные двигателя, получили максимальный угол развала в 180 градусов. Что позволило конструкторам снизить высоту агрегата до минимальных размеров, и распределить нагрузку на коленчатый вал, увеличивая его ресурс.

VR моторы



Это комбинация свойств рядных и V-образных агрегатов. Угол развала в таких двигателях достигает 15 градусов, что позволяет использовать одну головку блока цилиндров с единым механизмом газораспределения.

W-образные моторы



Одни из самых мощных и «экстремальных» конструкций ДВС. Могут иметь три ряда цилиндров с большим углом развала, или два совмещенных VR блока. На сегодняшний день, распространение получили моторы на восемь и двенадцать цилиндров, но конструкция позволяет использовать и большее количество цилиндров.

Характеристики двигателя внутреннего сгорания

Просмотрев множество информации про различные автомобили, любой интересующийся человек, увидит определенные основные параметры мотора:

Мощность силового агрегата, измеряющуюся в л.с. (или кВт*ч);

Максимальный крутящий момент развиваемый силовым агрегатом, измеряющийся в Н/м;

Большинство автолюбителей, разделяют силовые агрегаты, только по мощности. Но данное разделение не совсем верное. Безусловно, агрегат в 200 «лошадей», предпочтительнее двигателя в 100 «лошадей» на тяжелом кроссовере. А для легкого городского хэтчбека, хватит и 100 сильного мотора. Но есть некоторые нюансы.

Максимальная мощность, указанная в технической документации, достигается при определенных оборотах коленвала. Но используя автомобиль в городских условиях, водитель редко раскручивает мотор выше 2 500 оборотов в минуту. Поэтому, большее время эксплуатации машины, задействована только часть потенциальной мощности.

Но, часто, бывают случаи на дороге. Когда необходимо резко увеличить скорость для обгона, или для ухода от аварийной ситуации. Именно максимальный крутящий момент влияет на способность агрегата быстро набрать требуемые обороты и мощность. Если сказать проще, крутящий момент влияет на динамику автомобиля.

Стоит отметить небольшую разницу между бензиновыми и дизельными моторами. Двигатель работающий на бензине - выдает максимальный крутящий момент при оборотах коленчатого вала от 3 500 до 6 000 в минуту, а дизельные моторы могут достигать максимальных параметров при более низких оборотах. Поэтому, многим кажется. Что дизельные агрегаты мощнее и лучше «тянут». Но, большинство самых мощных агрегатов используют бензиновое топливо, так как они способны развить большее число оборотов в минуту.


А для подробного понимания термина крутящий момент, следует посмотреть на единицы его измерения: Ньютоны умноженные на метры. Другими словами, крутящий момент определяет силу, с которой поршень давит на коленчатый вал, а тот в свою очередь передает мощность на коробку передач, и в конечном итоге - на колеса.

Также, можно упомянуть про мощную технику, у которой максимальный крутящий момент может достигаться при оборотах в 1 500 в минуту. В основном - это трактора, мощные самосвалы, и некоторые дизельные вездеходы. Естественно, таким машинам нет необходимости раскручивать мотор до максимальных значений оборотов.


Основываясь на приведенной информации, можно сделать вывод, что крутящий момент зависит от объема силового агрегата, его габаритов, размеров деталей и их веса. Чем тяжелее все эти элементы, тем более преобладает крутящий момент на низких оборотах. Дизельные агрегаты имеют больший крутящий момент и меньшие обороты коленчатого вала (большая инертность тяжелого коленвала и других элементов не позволяют развивать больших оборотов).

Мощность автомобильного двигателя

Стоит признать, что мощность и крутящий момент - это взаимосвязанные параметры, зависящие друг от друга. Мощность - это определенное количество работы, произведенная мотором за время. В свою очередь, работа мотора - это крутящий момент. Поэтому, мощность характеризуется как количество крутящего момента за единицу времени.

Существует известная формула, характеризующая отношение мощности и крутящего момента:

Мощность = крутящий момент * обороты в минуту / 9549

В итоге, получим значение мощности в киловаттах. Но естественно, просматривая характеристики автомобилей, нам привычнее видеть показатели в «л.с.». Для перевода киловатт в л.с. необходимо умножить получившееся значение на 1,36.

Вывод

Как стало понятно из данной статьи, автомобильные двигатели внутреннего сгорания могут иметь множество отличий друг от друга. А выбирая автомобиль для постоянного использования - необходимо изучить все нюансы конструкции, характеристик, экономности, экологичности, мощности и надежности силового агрегата. Также, будет полезно изучить информацию о ремонтопригодности мотора. Так как многие современные агрегаты используют сложные системы газораспределения, впрыска топлива и выхлопа, что может усложнить их ремонт.

Составляющие детали двигателя машины:

Цилиндр и картер, защищенный снизу поддоном;

Поршень с компрессионными кольцами, расположенный внутри цилиндра;

Коленчатый вал, который движется в коренных подшипниках картера.

Элементы коленчатого вала: коренные шейки, щеки и шатунные шейки. С помощью цилиндра, поршня, шатуна и коленчатого вала кривошипно-шатунный механизм приводит в движение поршни, в результате чего происходит вращение коленчатого вала.

Поверх цилиндров установлен блок головки с клапанами. Их открытие и закрытие технически согласовывается с вращением коленчатого вала, что приводит в последовательное движение поршень.

Поршень перемещается к верхней конечной точке (ВМТ) и нижней конечной точке (НМТ).

При работающем двигателе автомобиля, поршень движется без остановок от ВМТ до НМТ благодаря маховику в форме диска и напрессованного плотно на него металлического венца с зубьями виде обода.

Почему двигатель работает?

Работа двигателя основана на том, что при подаче топлива в камеру сгорания в положении ВМТ, от свечи запала подается искра и происходит мини-взрыв топлива. При этом давление взрывных газов выталкивает поршень до НМТ. В данном процессе поочередно оказываются задействованы все поршни двигателя, приводящие в движение криво-шатунный механизм коленчатого вала, что и позволяет автомобилю двигаться.

Для постоянной и правильно работы двигателя необходимо чтобы во впускной клапан периодически поступали новые порции воздуха и горючего через форсунки. Отработанные газы, после их сгорания, выталкиваются из камеры сгорания через выпускной клапан. За это отвечает механизм газораспределения автомобиля и система впрыска топлива.

Назначение систем и механизмов автомобильного двигателя

Кривошипно-шатунный механизм – приводит в возвратно-поступательное движение поршни, что влечет за собой вращение коленвала.

Система подачи топлива – служит для дозированного впрыска горючего в двигатель автомобиля.

Механизм газораспределения – отвечает за своевременный впуск и выпуск отработанных газов в двигателе.

Система зажигания – служит для подачи прерывистого сигнала электротока по бронепроводам высокого напряжения на свечи зажигания, в результате чего образуется искра в камере сгорания двигателя и происходит воспламенения горючей смеси.

Система охлаждения – защищает двигатель от перегрева посредством механического (встречного потока воздуха) либо статического включения принудительного обдува двигателя крыльчаткой, расположенной в непосредственной близости к радиатору.

Система смазки – обеспечивает подачу масла по маслоканалам к движущимся и трущимся механизмам, дабы уменьшить их износ. Маслосистема включает в себя поддон с маслом, насос, фильтры тонкой и грубой очистки, маслоканалы и масляные клапана.

Также автомобиль оборудован пусковым устройством, состоящим из аккумулятора, стартера, замка зажигания и другими приборами контроля, управления и обеспечения жизнедеятельности автомобиля.

Двигатель — сердце. Как много сегодня означает это слово. Без двигателя не работает ни одно устройство, двигатель дает жизнь любому агрегату. В данной статье рассмотрим, что такое двигатель, какие виды бывают, как работает двигатель автомобиля.

Основная задача любого двигателя – превратить топливо в движение. Одним из способов достичь такого можно с помощью сжигания топлива внутри мотора. Отсюда и название двигатель внутреннего сгорания.

Но, кроме ДВС следует различать и двигатель внешнего сгорания. Примером служит паровой двигатель теплохода, когда его топливо (дерево, уголь) сгорают за пределами мотора, генерируя пар, являющийся движущей силой. Двигатель внешнего сгорания не так эффективен как внутреннего.

На сегодняшний день широкого распространения получил двигатель внутреннего сгорания, которым укомплектованы все автомобили. Несмотря на то, что КПД ДВС не близко к отметке 100 %, лучшие ученые и инженеры трудятся над доведением до совершенства.

По видам двигателя делятся:

Бензиновые: могут быть как карбюраторными так и инжекторными, используется система впрыска.

Дизельные: работают на основе дизельного топлива, которое под давлением распыляется в камере сгорания топливной форсункой.

Газовые: работают на основе сжиженного или сжатого газа, произведённого от переработки угля, торфа, дерева.
Итак, перейдем к начинке мотора.

Основным механизмом является блок цилиндров, он же часть корпуса механизма. Блок состоит из различных каналов внутри себя, что служит для циркуляции охлаждающей жидкости, снижая температуру механизма, в народе называется рубашка охлаждения.

Внутри блока цилиндров расположены поршни, их количество зависит от конкретного двигателя. На поршень одеваются в верхней части компрессионные кольца, а в нижней маслосъемные. Компрессионные кольца служат для создания герметичности при сжатии для воспламенения, а маслосъемные для забора смазывающей жидкости со стенки блока цилиндров и предотвращения попадания масла в камеру сгорания.

Кривошипно-шатунный механизм: передает вращательный момент от поршня к коленвалу. Состоит из поршней, цилиндров, головок, поршневых пальцев, шатунов, картера, коленвала.

Алгоритм работы двигателя достаточно прост: топливо распыляется форсункой в камере сгорания, где перемешивается с воздухом и под воздействием искры образованная смесь воспламеняется.

Образованные газы толкают поршень вниз и вращательный момент передается коленвалу, который передает вращение трансмиссии. С помощью шестеренного механизма происходит движение колес.

Если сотворить бесперебойный цикл воспламенений горючей смеси за определенное количество времени, то получим примитивный двигатель.

Современные моторы основаны на четырехтактном цикле сгорания для превращения топлива в движение транспорта. Иногда такой такт называют в честь немецкого ученого Отто Николауса, сотворивший в 1867 году такт, состоящий из таких циклов: впуск, сжатие, горение, выведение продуктов сгорания.

Описание и предназначение систем:

Система питания: дозирует образованную смесь воздуха и топлива и подает ее в камеры сгорания — цилиндры двигателя. В карбюраторном варианте состоит из карбюратора, воздушного фильтра, впускного трубоканала, фланца, топливного насоса с отстойником, бензобака, топливопровода.

Система газораспределения: балансирует процессы впуска горючей смеси и выпуска отработанных газов. Состоит из шестерен, кулачкового вала, пружины, толкателя, клапана.

: предназначена для подачи тока на контакт свечи для воспламенения рабочей смеси.

: уберегает мотор от перегрева, путем циркуляции и охлаждения жидкости.

: подает смазывающую жидкость к трущимся деталям, с целью минимизации трения и износа.

В данной статье рассмотрены понятие двигателя, его виды, описание и назначение отдельных систем, такт и его циклы.

Многие инженеры работают на тем, чтобы минимизировать рабочий объем мотора и существенно увеличить мощность, сократив потребление топлива. Новинки автопрома в очередной раз подтверждают рациональность конструкторских разработок.

Похожие статьи