Назначение, устройство и работа систем питания дизельного двигателя. Инжекторная система Устройство и работа питания двигателя

Назначение, устройство и работа системы питания топливом


Система питания двигателя топливом предназначена для размещения запаса топлива на автомобиле, очистки, распыления топлива и равномерного распределения его по цилиндрам в соответствии с порядком работы двигателя.

В двигателе КамАЗ-740 применена система питания топливом раздельного типа (т. е. функции топливного насоса высокого давления и форсунки разделены). Она включает в себя (рис. 37) топливные баки, топливный фильтр грубой очистки, топливный фильтр тонкой очистки, топливоподкачивающий насос* низкого давления, насос ручной прокачки топлива, топливный насос высокого давления (ТНВД) с всережимным регулятором и автоматической муфтой опережения впрыска топлива, форсунки, топливопроводы высокого и низкого давления и контрольно-измерительные приборы.

Топливо из топливного бака под действием разрежения, создаваемого топливоподкачивающим насосом, через фильтры грубой и тонкой очистки по топливопроводам низкого давления подается к топливному насосу высокого давления. В соответствии с порядком работы двигателя (1-5-4-2-6-3-7-8) ТНВД подает топливо под высоким давлением и определенными порциями через форсунки в камеры сгорания цилиндров двигателя. Форсунками топливо распыляется. Излишки топлива, а вместе с ними и попавший в систему воздух через перепускной клапан ТНВД и клапан-жиклер фильтра тонкой очистки отводятся в топливный бак. Топливо, просочившееся через зазор

Рис. 37. Система питания двигателя топливом:
1 - бак топливный; 2 - топливопровод к фильтру грубой очистки; 3 - тройник; 4 - фильтр грубой очистки топлива; 5 - сливной дренажный топливопровод форсунок левого ряда; 6 - форсунка; 7 - подводящий топливопровод к насосу низкого давления; 8 - топливопровод высокого давления; 9 - ручной топливоподкачивающий насос; 10 - топ-ливоподкачивающий насос низкого давления; 11 - топливопровод к фильтру тонкой очистки; 12 - топливный насос высокого давления; 13 - топливопровод к электромагнитному клапану; 14 - электромагнитный клапан; /5-сливной дренажный топливопровод форсунок правого ряда; 16 - свеча факельная; П - дренажный топливопровод насоса высокого давления; 18 - фильтр тонкой очистки топлива; 19 - подводящий топливопровод к насосу высокого давления; 20 - дренажный топливопровод фильтра тонкой очистки топлива; 21 - сливной топливопровод; 22 - кран распределительный

Рис. 38. Топливный бак:
1 - дно; 2 - перегородка; 3 - корпус; 4 - пробка сливного крана; 5 - наливная труба; 6 - пробка наливной трубы; 7 -стяжная лента; 8 - кронштейн крепления бака

Топливные баки (рис. 38) предназначены для размещения и хранения на автомобиле определенного.запаса топлива. На автомобиле КамАЗ-4310 установлено два бака емкостью по 125 л каждый. Расположены они по обеим сторонам автомобиля на лонжеронах рамы. Бак состоит из двух половин, выштампован-ных из листовой стали и соединенных сваркой; для предохранения от коррозии освинцован изнутри.

Внутри бака имеются две перегородки, которые служат для смягчения гидравлических ударов топлива о стенки при движении автомобиля. Бак оборудован заливной горловиной с выдвижной трубой, фильтрующей сеткой и герметичной крышкой. В верхней части бака установлены датчик указателя уровня топлива реостатного типа, трубка, выполняющая роль воздушного клапана. В нижней части бака размещены заборная трубка и штуцер с краном для слива отстоя. На конце заборной трубки имеется сетчатый фильтр.

Фильтр грубой очистки топлива (рис. 39) предназначен для предварительной очистки топлива, поступающего в топливопод-качивающий насос. Установлен с левой стороны на раме автомобиля. Он состоит из корпуса, отражателя с фильтрующей сеткой, распределителя, успокоителя, стакана фильтра, подводящего и отводящего штуцеров с прокладками. Стакан с крышкой соединяется четырьмя болтами через резиновую уплотнитель-«ую прокладку. В нижнюю часть стакана ввертывается сливная пробка.

Топливо, поступающее через подводящий штуцер из топливного бака, подается к распределителю. Крупные посторонние частицы и вода собираются в нижней части стакана. Из верхней части топливо через сетчатый фильтр подводится к отводящему штуцеру, а из него - к топливопод-качивающему насосу.

Фильтр тонкой очистки топлива (рис. 40) предназначен для окончательной очистки топлива перед поступлением его в топливный насос высокого давления. Фильтр установлен в задней части двигателя в самой высокой точке системы питания. Такая установка обеспечивает сбор воздуха, попавшего в систему питания, и его удаление в топливный бак через клапан-жиклер. Фильтр состоит из корпуса,

двух фильтрующих элементов, двух колпаков с приваренными стержнями, клапана-жиклера, подводящего и отводящего штуцеров с уплотнительными прокладками, элементов уплотнения. Корпус отлит из алюминиевого сплава. В нем выполнены каналы для подвода и отвода топлива, полость для установки клапана-жиклера и кольцевые проточки для установки колпаков.

Сменные картонные фильтрующие элементы изготовлены из высокопористого картона типа ЭТФЗ. Торцевое уплотнение элементов осуществляется верхними и нижними уплотнителями. Плотное прилегание элементов к корпусу фильтра обеспечивается пружинами, устанавливаемыми на стержни колпаков.

Клапан-жиклер предназначен для удаления воздуха, попавшего в систему питания. Он установлен в корпусе фильтра и состоит из колпака, пружины клапана, пробки, регулировочной шайбы, уплотнительной шайбы. Клапан-жиклер открывается, когда давление в полости перед клапаном равно 0,025… 0,045 МПа (0,25…0,45 кгс/см2), а при давлении 0,22±0,02 МПа (2,2±0,2 кгс/см2) начинает перепускаться топливо.

Топливо под давлением от топливоподкачивающего насоса заполняет внутреннюю полость колпака и продавливается через фильтрующий элемент, на поверхности которого остаются механические примеси. Очищенное топливо с внутренней полости фильтрующего элемента подается к впускной полости ТНВД.

Рис. 39. Фильтр грубой очистки топлива:
1 - пробка сливная; 2 - стакан; 3 - успокоитель; 4 - сетка фильтрующая; 5 - отражатель; 6 - распределитель; 7- болт; 8- фланец; 9- кольцо уплотнительное; 10 - корпус

Топливоподкачивающий насос низкого давления предназначен для подачи топлива через фильтры грубой и тонкой очистки к впускной полости ТНВД. Насос поршневого типа с приводом от эксцентрика кулачкового вала ТНВД. Давление подачи 0,05…0,1 МПа (0,5…1 кгс/см2). Насос установлен на задней крышке ТНВД. Топливоподкачивающий насос (рис. 41, 42) состоит из корпуса, поршня, пружины поршня, толкателя поршня, штока толкателя, пружины толкателя, направляющей втулки штока, впускного клапана, нагнетательного клапана.

Корпус насоса чугунный. В нем выполнены каналы и полости для поршня и клапанов. Полости под поршнем и над поршнем соединены каналом через нагнетательный клапан.

Толкатель предназначен для передачи усилия от эксцентрика кулачкового вала поршню. Толкатель роликового типа.

Эксцентрик кулачкового вала ТНВД через толкатель и шток сообщает поршню насоса (см. рис. 41) возвратно-поступательное движение.

Рис. 40. Фильтр тонкой очистки топлива:
1 - корпус; 2 - болт; 3 - шайба уплотнительная; 4 - пробка; 5, 6 - прокладки; 7 - элемент фильтрующий; 8 - колпак; 9 - пружина фильтрующего элемента; 10 - пробка сливная; 11 - стержень

При опускании толкателя поршень под действием пружина движется вниз. Во всасывающей полости а создается разрежение, впускной клапан открывается и пропускает топливо в над-поршневую полость. Одновременно топливо из подпоршневой полости через фильтр тонкой очистки поступает во впускные каналы ТНВД. При движении поршня вверх впускной клапан закрывается и топливо из надпоршневой полости через нагнетательный клапан поступает в полость под поршнем. Когда давление в нагнетательной магистрали б повышается, поршень прекращает вслед за толкателем двигаться вниз, а остается в положении, которое определяется равновесием сил от давления топлива с одной стороны и усилия пружины с другой. Таким образом, поршень совершает не полный ход, а частичный. Тем самым производительность насоса будет определяться расходом топлива.

Ручной топливоподкачивающий насос (см. рис. 42) предназначен для заполнения системы топливом и удаления из нее воздуха. Насос поршневого типа, крепится на корпусе топли-воподкачивающего насоса через уплотняющую медную шайбу.

Насос состоит из корпуса, поршня, цилиндра, штока поршня и рукоятки, опорной тарелки, впускного клапана (общего с топливоподкачивающим насосом).

Заполнение и прокачивание системы осуществляется движением рукоятки со штоком вверх-вниз. При движении рукоятки вверх в подпоршневом пространстве создается разрежение. Впускной клапан открывается и топливо поступает в полость над поршнем топливоподкачивающего насоса. При движении рукоятки вниз нагнетательный клапан топливоподкачивающего насоса открывается и топливо под давлением поступает в нагнетательную магистраль. Далее процесс повторяется.

После прокачки рукоятка должна быть плотно навернута на верхний резьбовой хвостовик цилиндра. При этом поршень ярижимается к резиновой прокладке, уплотняя впускную полость топливоподкачивающего насоса.

Рис. 41. Схема работы топливоподкачивающего насоса низкого давления и ручного топливоподкачивающего насоса:
1 - эксцентрик привода насоса; 2 - толкатель; 3 - поршень; л – впускной клапан; 5 - ручной насос; 6 - нагнетательный 4 клапан

Топливный насос высокого давления (ТНВД) предназначен для подачи дозированных порций топлива под высоким давлением в цилиндры двигателя в соответствии с порядком их работы.

Рис. 42. Топливоподкачивающий насос:
1 - эксцентрик привода насоса; 2 - ролик толкателя; 3 - корпус (цилиндр) насоса; 4 - пружина толкателя; 5 - шток толкателя; 6 - втулка штока; 7 - поршень; 8 - пружина поршня; 9 - корпус насоса высокого давления; 10 - седло впускного клапана; 11- корпус топливоподкачивающего насоса низкого давления; 12 - впускной клапан; 13 - пружина клапана; /4 - ручной подкачивающий насос; 15 - шайба; 16 - пробка нагнетательного клапана; 17 - пружина нагнетательного клапана; 18 - нагнетательный клапан топливного насоса низкого давления

Рис. 43. Топливный насос высокого давления: 1 - задняя крышка регулятора; 2, 3 - ведущая и промежуточная шестерни регулятора частоты вращения; 4- ведомая шестерня регулятора с державкой грузов; 5 - ось груза; 6 - груз; 7-муфта грузов; 8 - палец рычага; 9 - корректор; 10 - рычаг пружины регулятора; 11 - рейка; 12 - втулка рейки; 13 - редукционный клапан; 14 - пробка рейки; 15 - ыуфта опережения впрыска топлива; 16 - кулачковый вал; 17, - корпус насоса; 18 - насосная секция

Насос установлен в развале блока цилиндров и приводится в действие от шестерни распределительного вала через шестерню привода насоса. Направление вращения кулачкового вала со стороны привода - правое.

Насос состоит из корпуса, кулачкового вала (см. рис. 43), восьми насосных секций, всережимного регулятора частоты вращения, муфты опережения впрыска топлива и привода топливного насоса.

Корпус ТНВД предназначен для размещения насосных секций, кулачкового вала и регулятора частоты вращения. Отлит из алюминиевого сплава, в нем выполнены впускной и отсечной каналы и полости для установки и крепления насосных секций, кулачкового вала с подшипниками, шестерен привода регулятора, подводящих и отводящих топливных штуцеров. На заднем торце корпуса насоса крепится крышка регулятора, в которой расположен топливоподкачивающий насос низкого давления с насосом ручной подкачки топлива. Сверху крышки ввертывается штуцер с маслоподводящей трубкой для смазки деталей ТНВД под давлением. Масло из насоса сливается по трубке, соединяющей нижнее отверстие крышки регулятора с отверстием в развале блока. Верхняя полость корпуса ТНВД закрывается крышкой (см. рис. 44), на которой расположены рычаги управления регулятором частоты вращения и два защитных кожуха топливных секций насоса. Крышка устанавливается на двух штифтах и крепится болтами, а защитные кожухи - двумя винтами. На переднем торце корпуса насоса на выходе из отсечного канала ввернут штуцер с перепускным клапаном шарикового типа, поддерживающим избыточное давление топлива в насосе 0,06…0,08 МПа (0,6…0,8 кгс/см2). В нижней части корпуса насоса выполнена полость для установки кулачкового вала.

Кулачковый вал предназначен для сообщения движения плунжерам насосных секций и обеспечения своевременной подачи топлива в цилиндры двигателя. Кулачковый вал изготавливается из стали. Рабочие поверхности кулачков и опорных шеек цементируются на глубину 0,7…1,2 мм. Благодаря К-об-разной конструкции насоса кулачковый вал имеет меньшую длину и, следовательно, обладает более высокой жесткостью. Вал вращается в двух конических подшипниках, внутренние обоймы которых напрессованы на шейки вала. Осевой зазор кулачкового вала 0,1 мм регулируется прокладками, устанавливаемыми под крышку подшипника. Для уплотнения кулачкового вала в крышке имеется резиновая манжета. На переднем конусном конце кулачкового вала на сегментной шпонке устанавливается автоматическая муфта угла опережения впрыска топлива. На заднем конце кулачкового вала монтируется упорная втулка, ведущая шестерня регулятора в сборе, а на призматической шпонке - фланец ведущей шестерни регулятора. Фланец выполнен вместе с эксцентриком привода топливопод-качивающего насоса. Крутящий момент от кулачкового вала на ведущую шестерню регулятора передается через фланец посредством резиновых сухарей. При вращении кулачкового вала усилие передается на роликовые толкатели и через пяты толкателей на плунжеры насосных секций. Каждый толкатель от поворота фиксируется сухарем, выступ которого входит в паз корпуса насоса. За счет изменения толщины пяты регулируется начало подачи топлива. При установке пяты большей толщины топливо начинает подаваться раньше.

Рис. 44. Крышка регулятора:
1 - болт регулирования пусковой подачи; 2 - рычаг останова; 3 - бол* регулирования хода рычага останова; 4 - болт ограничения максимальной частоты вращения; 5 - рычаг управления регулятором (рейкой топливного насоса); 6 - болт ограничения минимальной частоты вращения; I - работа; It - выключено

Насосная секция (рис. 45,а) - часть топливного насоса высокого давления, осуществляющая дозирование и подачу топлива к форсунке. Каждая насосная секция состоит из корпуРЗ, плунжерной пары, поворотной втулки, пружины плунжера, нагнетательного клапана, толкателя.

Корпус секции имеет фланец, при помощи которого секция крепится на шпильках, ввернутых в корпус насоса. Отверстия во фланце под шпильки имеют овальную форму. Это позволяет поворачивать насосную секцию для регулирования равномерности подачи топлива отдельными секциями. При повороте секции против часовой стрелки цикловая подача увеличивается, по часовой - уменьшается. В корпусе секции выполнены два отверстия для прохода топлива из каналов в насосе к отверстиям в плунжерной втулке (А, Б), отверстие для установки штифта, фиксирующего положение втулки и плунжера относительно корпуса секции, и прорезь для размещения поводка поворотной втулки.

Плунжерная пара (рис. 45, б) - узел насосной секции, непосредственно предназначенный для дозирования и подачи топлива. Плунжерная пара включает втулку плунжера и плунжер. Они представляют собой прецизионную пару. Изготавливаются из хромомолибденовой стали, подвергаются закалке с последующей обработкой глубоким холодом для стабилизации свойств материала. Рабочие поверхности втулки и плунжера азотируют.

Рис. 45. Секция топливного насоса высокого давления:
а - конструкция; б - схема верхней части плунжерной пары; А - полость нагнетания топливного насоса; Б - полость отсечки; 1 - корпус насоса; 2- толкатель секции; 3 - пята толкателя; 4 - пружина: 5, 14- плунжер секции; 6, 13 - втулка плунжера; 7 - нагнетательный клапан; 8 - штуцер; 9 - корпус секции; 10 - отсечная кромка винтовой канавки плунжера; 11 - рейка; 12 - поворотная втулка плунжера

Плунжер является подвижной деталью плунжерной пары и выполняет роль поршня. Плунжер в верхней части имеет осевое сверление, две спиральные канавки, выполненные с двух сторон плунжера, и радиальное сверление, соединяющее осевое сверление и канавки. Спиральная канавка предназначена для изменения цикловой подачи топлива за счет поворота плунжера, а следовательно, и канавки относительно отсечного отверстия втулки плунжера. Поворот плунжера относительно втулки осуществляется рейкой топливного насоса через шипы плунжера. На наружной поверхности одного шипа имеется метка. При сборке секции метка на шипе плунжера и прорезь в корпусе секции для установки поводка поворотной втулки должны находиться с одной стороны. Наличие второй канавки обеспечивает гидравлическую разгрузку плунжера от боковых усилий. За счет этого повышается надежность работы насосной секции.

Уплотнение между втулкой и корпусом секции обеспечивается кольцом из маслобензостойкой резины, установленным в кольцевую канавку втулки.

Нагнетательный клапан и его седло выполняются из стали, закаливаются и обрабатываются глубоким холодом. Клапан и седло составляют прецизионную пару, в которой замена одной детали на одноименную из другого комплекта не допускается.

Нагнетательный клапан расположен на верхнем конце втулки и прижат к седлу пружиной. Седло нагнетательного клапана прижато к втулке плунжера торцевой поверхностью штуцера через уплотнительную текстолитовую прокладку.

Нагнетательный клапан грибкового типа с цилиндрической направляющей частью. Радиальное отверстие диаметром 0,3 мм служит для корректировки цикловой подачи при частоте вращения кулачкового вала 600…1000 мин-1. Корректировка осуществляется за счет возрастания дросселирующего действия клапана в период отсечки подачи, в результате чего снижается количество топлива, перетекающего из топливопровода высокого давления в надплунжерное пространство. Разгрузка топливопровода от высокого давления осуществляется за счет перемещения при посадке направляющей клапана в канале седла. Верхняя часть направляющей выполняет роль поршенька, отсасывающего топливо из топливопровода.

Всережимный регулятор частоты вращения. Двигатели внутреннего сгорания должны работать на заданном установившемся (равновесном) режиме, характеризуемом постоянством частоты вращения коленчатого вала, температуры охлаждающей жидкости и других параметров. Такой режим работы может поддерживаться только при условии равенства крутящего момента двигателя моменту сопротивления движению. Однако в процессе эксплуатации это равенство часто нарушается вследствие изменения нагрузки или задаваемого режима, поэтому значение параметров (частоты вращения и др.) отклоняется от заданных. Для восстановления нарушенного режима работы двигателя применяется регулирование. Регулирование может осуществляться вручную путем воздействия на орган управления (рейку топливного насоса) или при помощи специального прибора, называемого автоматическим регулятором частоты вращения. Таким образом, регулятор частоты вращения предназначен для поддержания заданной водителем частоты вращения коленчатого вала путем автоматического изменения цикловой подачи топлива в зависимости от нагрузки.

На двигателе КамАЗ установлен всережимный центробежный регулятор частоты вращения прямого действия. Он размещен в развале корпуса ТНВД, а управление выведено на крышку насоса.

Регулятор имеет следующие элементы (рис. 46):
– задающее устройство;
– чувствительный элемент;
– сравнивающее устройство;
– исполнительный механизм;
– привод регулятора.

В задающее устройство входят рычаг управления регулятором, рычаг пружины, пружина регулятора, рычаг регулятора, рычаг с корректором, регулировочные болты ограничения частоты вращения.

К чувствительному элементу относятся вал регулятора с державкой грузов, грузы с роликами, упорный подшипник, муфта регулятора с пятой.

К сравнивающему устройству относится рычаг муфты грузов, с помощью которого передается движение муфты регулятора исполнительному механизму (рейкам).

К исполнительному механизму относятся рейки топливного насоса, рычаг реек (дифференциальный рычаг).

В привод регулятора входят ведущая шестерня регулятора, промежуточная шестерня 6, шестерня регулятора, выполненная за одно целое с валом всережимного регулятора.

Для останова двигателя имеется устройство, в которое входят рычаг останова, пружина рычага останова, стартовая пружина, ограничительный болт регулировки хода рычага останова, болт регулировки пусковой подачи.

Управление подачей топлива осуществляется с помощью ножного и ручного приводов.

Вращение ведущей шестерне регулятора передается через-резиновые сухари. Сухари, являясь упругими элементами, гасят колебания, связанные с неравномерностью вращения вала. Уменьшение высокочастотных колебаний приводит к снижению износа сочленений основных деталей регулятора. От ведущей шестерни вращение к ведомой шестерне передается через промежуточную шестерню.

Ведомая шестерня выполнена заодно с державкой грузов, вращающейся на двух шарикоподшипниках. При вращении державки грузы под действием центробежных сил расходятся и через упорный подшипник перемещают муфту, муфта, упираясь в палец, в свою очередь, перемещает рычаг муфты грузов.

Рычаг муфты грузов одним концом крепится на оси рычагов регулятора, другим через штифт соединен с рейкой топливного насоса. На оси также крепится рычаг регулятора, другой конец которого перемещается до упора в регулировочный болт подачи топлива. Рычаг муфты грузов воздействует на рычаг регулятора через корректор. Рычаг управления регулятором жестко связан с рычагом пружины регулятора.

Рис. 46. Регулятор частоты вращения:
1 - крышка задняя; 2 - гайка; 3 - шайба; 4 - подшипник; 5 - прокладка регулировочная; 6 - шестерня промежуточная; 7 - прокладка задней крышки регулятора; 8 - кольцо стопорное; 9- державка грузов; 10 - ось груза; 11 - подшипник упорный; 12 - муфта; 13 - груз; 14 - палец; 15 - корректор; 16 - возвратная пружина рычага останова; 17 - болт; 18 - втулка; 19 - кольцо; 20 - рычаг пружины регулятора; 21 - шестерня ведущая: 22 - сухарь ведущей шестерни; 23 - фланец ведущей шестерни; 24 - регулировочный болт подачи топлива; 25 - рычаг стартовой

Стартовая пружина присоединена к рычагу стартовой пружины и рычагу реек. Рейки, в свою очередь, связаны с поворотными втулками насосных секций. Снижение степени неравномерности регулятора на малых частотах вращения коленчатого вала достигается за счет изменения плеча приложения усилия пружины регулятора к рычагу регулятора.

Повышение чувствительности регулятора обеспечивается качественной обработкой трущихся поверхностей подвижных деталей регулятора и насоса, надежной смазкой их и увеличением угловой скорости вращения муфты грузов в два раза па отношению к кулачковому валу насоса за счет передаточного числа приводных шестерен регулятора.

На двигателе установлен регулятор частоты вращения с корректором дымности, который встроен в рычаг муфты грузов. Корректор, уменьшая подачу топлива, позволяет снизить дымление двигателя на малой частоте вращения коленчатого вала (1000…1400 мин).

Заданный скоростной режим работы двигателя устанавливается рычагом управления регулятором, который поворачивается и через рычаг пружины увеличивает ее натяжение. Под воздействием этой пружины рычаг через корректор воздействует на рычаг муфты, который перемещает рейки, связанные с поворотными втулками плунжеров, в сторону увеличения подачи топлива. Частота вращения коленчатого вала увеличивается.

Центробежная сила вращающихся грузов через упорный подшипник, муфту и рычаг муфты грузов передается на рейку топливного насоса, которая через дифференциальный рычаг соединена с другой рейкой. Перемещение реек центробежной силой грузов вызывает уменьшение подачи топлива.

Регулируемый скоростной режим зависит от соотношения силы пружины регулятора и центробежной силы грузов при установленной частоте вращения коленчатого вала. Чем больше натянута пружина регулятора, тем при более высоком скоростном режиме его грузы могут изменить положение рычага регулятора в сторону ограничения подачи топлива в цилиндры двигателя. Устойчивый режим работы двигателя будет в том случае, если центробежная сила грузов будет равна силе пружины регулятора. Каждому положению рычага управления регулятором соответствует определенная частота вращения коленчатого вала.

При заданном положении рычага управления регулятором в случае уменьшения нагрузки на двигатель (движение на спуск) частота вращения коленчатого вала, а следовательно, и вала привода регулятора повышается. В этом случае центробежная сила грузов возрастает и они расходятся.

Грузы воздействуют на упорный подшипник и, преодолевая усилие пружины, заданное водителем, поворачивают рычаг регулятора и перемещают рейки в сторону уменьшения подачи по тех пор, пока не установится подача топлива, соответствующая условиям движения. Заданный скоростной режим работы двигателя восстановится.

С увеличением нагрузки (движение на подъем) частота вращения, а следовательно, и центробежные силы грузов уменьшаются. Усилие пружины через рычаги 31, 32, воздействуя на муфту, перемещает ее и сближает грузы. При этом рейки перемещаются в сторону увеличения подачи топлива до тех пор, пока частота вращения коленчатого вала не достигнет величины, заданной условиями движения.

Таким образом, всережимный регулятор поддерживает любой заданный водителем режим движения.

При работе двигателя на номинальной частоте вращения и полной подаче топлива Г-образный рычаг 31 упирается в регулировочный болт 24. В случае увеличения нагрузки частота вращения коленчатого вала и вала регулятора начинает снижаться. При этом нарушается равновесие между силой пружины регулятора и центробежной силой его грузов, приведенной к оси рычага регулятора. И за счет избыточной силы пружины корректора плунжер корректора перемещает рычаг муфты в сторону увеличения подачи топлива.

Таким образом, регулятор частоты вращения не только поддерживает работу двигателя на заданном режиме, но и обеспечивает подачу в цилиндры дополнительных порций топлива при работе с перегрузкой.

Выключение подачи топлива (останов двигателя) осуществляется поворотом рычага останова до упора в болт регулировки хода рычага останова. Рычаг, преодолевая усилие пружины (установленной на рычаге), повернет за палец рычаг регулятора. Рейки перемещаются до полного выключения подачи топлива. Двигатель останавливается. После остановки рычаг останова под действием возвратной пружины возвращается в положение РАБОТА, а стартовая пружина через рычаг реек вернет рейки топливного насоса в сторону пусковой подачи топлива (195…210 мм3/цикл).

Автоматическая муфта опережения впрыска топлива. В дизелях топливо впрыскивается в воздушный заряд. Топливо не может мгновенно воспламениться, а должно пройти подготовительную фазу, во время которой осуществляется перемешивание топлива с воздухом и его испарение. При достижении температуры самовоспламенения смесь воспламеняется и быстро начинает гореть. Этот период сопровождается резким нарастанием давления и повышением температуры. Для того чтобы получить наибольшую мощность, необходимо, чтобы сгорание топлива произошло в минимальном объеме, т. е. когда поршень находится в ВМТ. С этой целью топливо всегда впрыскивается еще до прихода поршня в ВМТ.

Угол, определяющий положение коленчатого вала относительно ВМТ в момент начала впрыска топлива, называется углом опережения впрыска топлива. Конструкция привода топливного насоса дизеля КамАЗ обеспечивает впрыск топлива за 18° до прихода поршня в ВМТ при такте сжатия.

С увеличением частоты вращения коленчатого вала двигателя время на подготовительный процесс уменьшается и воспламенение может начаться после ВМТ, что приведет к снижению полезной работы. Для того чтобы получить наибольшую работу с увеличением частоты вращения коленчатого вала, топливо необходимо впрыскивать раньше, т. е. увеличивать угол опережения впрыска топлива. Это можно сделать за счет поворота кулачкового вала в сторону его вращения относительно привода. Для этой цели между кулачковым валом ТНВД и его приводом устанавливается муфта опережения впрыска топлива. Применение муфты значительно улучшает пусковые качества дизеля и его экономичность на различных скоростных режимах.

Таким образом, муфта опережения впрыска топлива предназначена для изменения момента начала подачи топлива в зависимости от частоты вращения коленчатого вала двигателя.

На КамАЗ-740 применена автоматическая муфта центробежного типа прямого действия. Диапазон регулирования угла опережения впрыска топлива 18…28°.

Муфта установлена на коническом конце кулачкового вала ТНВД на сегментной шпонке и крепится кольцевой гайкой с пружинной шайбой. Она изменяет момент впрыска топлива за счет дополнительного поворота кулачкового вала насоса во время работы двигателя относительно вала привода насоса высокого давления (рис. 47).

Автоматическая муфта (рис. 47, а) состоит из корпуса, ведущей полумуфты с пальцами, ведомой полумуфты с осями грузов, грузов с пальцами, проставок, стаканов пружин, пружин, регулировочных прокладок и упорных шайб.

Корпус муфты чугунный. На переднем торце выполнено два резьбовых отверстия для заполнения муфты моторным маслом. Корпус наворачивается на ведомую полумуфту и стопорится. Уплотнение между корпусом и ведущей полумуфтой и ступицей ведомой полумуфты осуществляется двумя резиновыми манжетами, а между корпусом и ведомой полумуфтой - кольцом из маслобензостойкой резины.

Ведущая полумуфта установлена на ступице ведомой и может поворачиваться относительно нее. Привод муфты осуществляется от приводного вала ТНВД (рис. 47, б). В ведущей полумуфте выполнено два пальца, на которых установлены проставки. Проставка упирается одним концом в палец груза, а другим скользит по профильному выступу грузов.

Ведомая полумуфта установлена на конусной части кулачкового вала ТНВД. В полумуфту запрессованы две оси грузов и нанесена метка для установки угла опережения впрыска топлива. Грузы качаются на осях в плоскости, перпендикулярной оси вращения муфты. В грузах имеются профильные выступы и пальцы. На грузы действуют усилия пружин.

Рис. 47. Автоматическая муфта опережения впрыска топлива:
а - автоматическая муфта: 1 - ведущая полумуфта; 2, 4 - манжеты; 3 - втулка ведущей полумуфты; 5 - корпус; 6 - регулировочная прокладка; 7 - стакан пружины; 8 - пружина; 9, 15 - шайбы; 10 - кольцо; 11 - груз с пальцем; 12 - про-ставка с осью; 13 - ведомая полумуфта; 14 - уплотнительное кольцо; 16 - ось грузов
б - привод автоматической муфты и установка ее по меткам; 1 - метка ня заднем фланце полумуфты; II - метка на муфте опережения впрыска; III - метка на корпусе топливного насоса; 1 - автоматическая муфта опережения впрыска; 2 - ведомая полумуфта привода; 3 - болт; 4 - фланец полумуфты привода

При минимальной частоте вращения коленчатого вала центробежная сила грузов невелика и они удерживаются усилием пружин. В этом случае расстояние между осями грузов (на ведомой полумуфте) и пальцами ведущей полумуфты будет максимальным. Ведомая часть муфты отстает от ведущей на максимальный угол. Следовательно, угол опережения впрыска топлива будет минимальный.

С увеличением частоты вращения коленчатого вала грузы под действием центробежных сил, преодолевая сопротивление пружин, расходятся. Проставки скользят по профильным выступам грузов и поворачиваются вокруг осей пальцев грузов. Так как в отверстие проставок входят пальцы ведущей полумуфты, то расхождение грузов приводит к тому, что расстояние между пальцами ведущей полумуфты и осями грузов будет уменьшаться, т. е. будет уменьшаться и угол отставания ведомой полумуфты от ведущей. Ведомая полумуфта поворачивается относительно ведущей на некоторый угол по ходу вращения муфты (направление вращения правое). Поворот ведомой полумуфты вызывает проворачивание кулачкового вала ТНВД, что приводит к более раннему впрыску топлива относительно ВМТ.

При уменьшении частоты вращения коленчатого вала двигателя центробежная сила грузов уменьшается и они под действием пружины начинают сходиться. Ведомая полумуфта поворачивается относительно ведущей в сторону, противоположную вращению, уменьшая угол опережения впрыска топлива.

Форсунка предназначена для впрыска топлива в цилиндры “двигателя, распыления и распределения его по объему камеры сгорания. На двигателе КамАЗ-740 устанавливаются форсунки закрытого типа с многодырочным распылителем и гидравлически управляемой иглой. Давление начала подъема иглы 20… 22,7 МПа (200…227 кгс/см2). Форсунка устанавливается в гнездо головки цилиндра и крепится скобой. Уплотнение форсунки в гнезде головки цилиндра осуществляется в верхнем поясе резиновым кольцом 7 (рис. 48), в нижнем - конусом гайки распылителя и медной шайбой. Форсунка состоит из корпуса 6, гайки распылителя 2, распылителя, проставки 3, штанги 5, пружины, опорной и регулировочных шайб и штуцера форсунки с фильтром.

Корпус форсунки изготовлен из стали. В верхней части корпуса выполнены резьбовые отверстия для установки штуцера с фильтром и штуцера дренажного трубопровода (см. рис. 37). В корпусе выполнены топливоподводящий канал и канал для отвода топлива, просачивающегося во внутреннюю полость корпуса.

Рис. 48. Форсунка:
а - с регулировочными шайбами; б -с наружной регулировкой; 1 - корпус распылителя; 2 - гайка распылителя; 3 - проставка; 4 - установочные штифты; 5 - штанга; 6 - корпус; 7 и 16 - уплотнительные кольца; 8 - штуцер; 9 - фильтр; 10 - уплотнительная втулка; 11 и 12 - регулировочные шайбы; 13 - пружина; 14 - игла распылителя; 15 - упор пружины;. 17 - эксцентрик

Гайка распылителя предназначена для соединения распылителя с корпусом форсунки.

Распылитель - узел форсунки, осуществляющий распыление и формирование струй впрыскиваемого топлива.

Корпус распылителя и игла составляют прецизионную пару, в которой замена одной какой-либо детали не допускается. Корпус изготовлен из хромоникелеванадиевой стали и подвергнут специальной термообработке (цементация, закалка с последующей обработкой глубоким холодом) для получения высокой твердости и износостойкости рабочих поверхностей. В корпусе распылителя выполнены кольцевая канавка и канал для подвода топлива в полость корпуса распылителя, а также два отверстия для штифтов, обеспечивающих фиксацию корпуса распылителя относительно корпуса форсунки. В нижней части корпуса выполнены четыре сопловых отверстия. Их диаметр 0,3 мм. Для обеспечения равномерного распределения топлива по объему камеры сгорания сопловые отверстия выполнены под разными углами. Это вызвано тем, что форсунка относительно оси цилиндра расположена под углом 21°.

Игла распылителя предназначена для запирания распыляющих отверстий после впрыска топлива. Игла выполнена из инструментальной стали и также подвергнута специальной обработке. С целью повышения срока службы распылителя и иглы запорная часть иглы выполнена двухконусной.

Проставка предназначена для фиксации корпуса распылителя относительно корпуса форсунки.

Штанга - подвижная деталь форсунки, предназначена для передачи усилия от пружины форсунки к игле распылителя.

Пружина форсунки предназначена для обеспечения необходимого давления подъема иглы. Натяжение пружины осуществляется регулировочными шайбами, которые устанавливаются между опорной шайбой и торцем внутренней полости корпуса форсунки. Изменение толщины шайб на 0,05 мм приводит к изменению давления начала подъема иглы на 0,3…0,35 МПа (3…3,5 кгс/см2). В форсунках второго типа (рис. 48,6) регулировка пружины производится поворотом эксцентрика 17.

Совместная работа насосной секции ТНВД и форсунки. Водитель, воздействуя на педаль подачи топлива через систему тяг и рычагов, задающее устройство всережимного регулятора, рейки топливного насоса, поворотные втулки, поворачивает плунжер. Тем самым устанавливает определенное расстояние между отсечным отверстием и отсечной кромкой винтовой канавки, обеспечивая определенную цикловую подачу топлива.

Плунжер под действием кулачкового вала совершает возвратно-поступательное движение. При движении плунжера вниз нагнетательный клапан, нагруженный пружиной, закрыт и в надплунжерной полости создается разрежение.

После открытия верхней кромкой плунжера впускного отверстия во втулке топливо из топливного канала под давлением 0,05…0,1 МПа (0,5… 1 кгс/см2) от топливоподкачивающего насоса поступает в надплунжерное пространство (рис. 49,а).

В начале движения (рис. 49, б) плунжера вверх часть топлива вытесняется через впускное и отсечное отверстия втулки в топливоподводящий канал. Момент начала подачи топлива определяется моментом перекрытия впускного отверстия втулки верхней кромкой плунжера. С этого момента при движении плунжера вверх происходит сжатие топлива в надплунжерной полости, а после достижения давления, при котором открывается нагнетательный клапан,- в трубопроводе высокого давления и форсунке.

Рис. 49. Схема работы насосной секции:
а - заполнение надплунжерной полости; б - начало подачи; в - конец подачи

Когда давление топлива в указанной полости становится более 20 МПа (200 кгс/см2), игла распылителя поднимается вверх и открывает доступ топлива к сопловым отверстиям распылителя, через которые и происходит впрыск топлива под высоким давлением в камеру сгорания.

При движении плунжера вверх, когда отсечная кромка винтовой канавки достигнет уровня отсечного отверстия, наступает момент окончания подачи топлива (рис. 49, а). При дальнейшем движении плунжера вверх надплунжерная полость через вертикальный канал, диаметральный канал, винтовую канавку сообщается с отсечным каналом. В результате этого давление в надплунжерной полости падает, нагнетательный клапан под действием пружины и давления топлива в штуцере насоса садится в седло и поступление топлива к форсунке прекращается, хотя плунжер еще может двигаться вверх. С понижением давления в топливопроводе ниже усилия, создаваемого мружинои, игла распылителя под действием пружины опускается вниз и перекрывает доступ топлива к сопловым отверстиям распылителя, прекращая тем самым подачу топлива в цилиндр двигателя. Просочившееся через зазор в паре игла - корпус распылителя топливо отводится через канал в корпусе форсунки к дренажному трубопроводу и далее в топливный бак.

Организационная часть (15 мин.).

Занятие 6. Система питания топливом двигателя Rotax 912

ТЕМА 4. Система питания топливом силовой установки Rotax 912.

Астана 2012 г.

УЧЕБНЫЕ И ВОСПИТАТЕЛЬНЫЕ ЦЕЛИ

КОНСТРУКЦИЯ СИЛОВОЙ УСТАНОВКИ

ТЕМА 4. Система питания топливом двигателя Rotax 912

1. Ознакомить курсантов с устройством системы питания топливомдвигателя внутреннего сгорания, с общим назначением ее агрегатов и систем.

2. Напомнить курсантам некоторые данные по физике.

3. Ознакомить курсантов с основными техническими данными системы питаниятопливом двигателя Rotax 912.

4. Привить курсантам способность грамотно действовать при возможных отказах системы питания топливомдвигателя Rotax 912.

ВРЕМЯ: 3 часа

МЕТОД: лекция

МЕСТО: учебная аудитория

РАЗРАБОТАЛ: МОЗГОВОЙ Н.Н.

Изучаемые вопросы:

6.1. Организационная часть (15 мин.).

6.2. Назначение и устройство системы питания топливом двигателей внутреннего сгорания. (50 мин.).

6.3. Состав, общая схема и работа системы питания топливом двигателя Rotax 912. (45 мин.).

6.4. Основные данные системы питания двигателя Rotax 912 (20 мин.).

6.5. Заключительная часть (5 мин.).

Опрос по теме №3.

Порядок изучения темы № 4.

Система питания топливо м двигателя внутреннего сгорания двигателя предназначена для хранения, очистки и подачи топлива, очистки воздуха, приготовления горючей смеси и подачи её в цилиндры двигателя. На различных режимах работы двигателя количество и качество горючей смеси должно быть различным, и это тоже обеспечивается системой питания топливом. Поскольку мы рассматриваем работу карбюраторного бензинового двигателя, то в дальнейшем, под топливом будет подразумеваться именно бензин.

Ри.с. 6.1. Схема расположения элементов системы питания
1 - заливная горловина с пробкой; 2 - топливный бак; 3 - датчик указателя уровня топлива с поплавком; 4 - топливозаборник с фильтром; 5 - топливопроводы; 6 - фильтр тонкой очистки топлива; 7 - топливные насосы; 8 - поплавковая камера карбюратора с поплавком; 9 - воздушный фильтр; 10 - смесительная камера карбюратора; 11 - впускной клапан; 12 - впускной трубопровод; 13 - камера сгорания

Система питания (см.рис. 6.1.) состоит из:

топливного бака;

фильтров очистки топлива;

топливного насоса,

воздушного фильтра,

карбюратора;

топливопроводов,

Топливный бак - это емкость для хранения топлива. Обычно он размещается в более безопасной части самолета (в фюзеляже, в крыле). От топливного бака к карбюратору бензин поступает по топливопроводам. У рачительного водителя первая ступень очистки бензина происходит при заливке его в топливный бак. Для этого в заливной горловине бака следует установить сетчатый или какой-либо другой фильтр. Вторая ступень очистки топлива - сетка на топливозаборнике внутри бака. Она не дает возможности оставшимся примесям и воде, попасть в систему питания двигателя. Наличие и количество бензина в баке контролируется по показаниям указателя уровня топлива. При минимальном остатке топлива на щитке прибора загорается соответствующая красная лампочка - лампа резерва. Расход топлива контролируется по показаниям расходомера, выводимого на прибор контроля параметров двигателя.


Топливный фильтр - следующий, третий этап очистки топлива. Фильтр располагается в моторном отсеке и предназначен для тонкой очистки бензина, поступающего к топливному насосу (возможна установка фильтра и после насоса).

Топливный насос - предназначен для принудительной подачи топлива из бака в карбюратор. Насос состоит из (см. рис. 6.2.):

корпуса, диафрагмы с пружиной и механизмом привода, впускного и нагнетательного (выпускного) клапанов. В нем также находится сетчатый фильтр для очередной - четвертой ступени очистки бензина. Топливный насос приводится в действие от от распределительного вала двигателя. При вращении вала, имеющийся на них эксцентрик набегает на шток привода топливного насоса. Шток начинает давить на рычаг, а тот, в свою очередь, заставляет диафрагму опускаться вниз. Над ней создается разряжение и впускной клапан, преодолевая усилие пружины, открывается. Порция топлива из бака засасывается в пространство над диафрагмой. При сбегании эксцентрика со штока, диафрагма освобождается от воздействия рычага и, за счет жесткости пружины, поднимается вверх. Возникающее при этом давление закрывает впускной клапан и открывает нагнетательный. Бензин над диафрагмой отправляется к карбюратору. При очередном набегании эксцентрика на шток, бензин всасывается и процесс повторяется. Обратите внимание на то, что подача бензина в карбюратор происходит только за счет усилия пружины, которая поднимает диафрагму. А это означает, что когда поплавковая камера карбюратора будет заполнена и игольчатый клапан (см. рис. 6.1.) перекроет путь бензину, диафрагма топливного насоса останется в нижнем положении. И до тех пор, пока двигатель не израсходует часть топлива из карбюратора, пружина будет не в состоянии «вытолкнуть» из насоса очередную порцию бензина.

Рис. 6.2. Схема работы топливного насоса а) всасывание топлива , б) нагнетание топлива

1 - нагнетательный патрубок; 2 - стяжной болт; 3 - крышка; 4 - всасывающий патрубок; 5 - впускной клапан с пружиной; 6 - корпус; 7 - диафрагма насоса; 8 - рычаг ручной подкачки; 9 - тяга; 10 - рычаг механической подкачки; 11 - пружина; 12 - шток; 13 - эксцентрик; 14 - нагнетательный клапан с пружиной; 15 - фильтр для очистки топлива

Так как топливный бак расположен ниже карбюратора, то возникает необходимость в принудительной подаче бензина. При этом используется электрическая помпа для подкачки топлива.

Воздушный фильтр (рис. 6.3.) предназначен для очистки воздуха, поступающего в цилиндры двигателя. Фильтр устанавливается на верхней части воздушной горловины карбюратора. При загрязнении фильтра возрастает сопротивление движению воздуха, что может привести к повышенному расходу топлива, так как горючая смесь будет слишком обогащаться бензином.

Рис. 6.3. Воздушный фильтр

Карбюратор предназначен для приготовления горючей смеси и подачи ее в цилиндры двигателя. В зависимости от режимов работы двигателя карбюратор меняет качество (соотношение бензина и воздуха) и количество этой смеси. Карбюратор – это один из самых сложных устройств автомобиля. Он состоит из множества деталей и имеет несколько систем, которые принимают участие в приготовлении горючей смеси, обеспечивая бесперебойную работу двигателя. Давайте разберемся с устройством и принципом работы карбюратора на несколько упрощенной схеме (рис. 6.4.).

Рис. 6.4. Схема работы простейшего карбюратора

1 - топливная трубка; 2 - поплавок с игольчатым клапаном; 3 - топливный жиклер; 4 - распылитель; 5 - корпус карбюратора; 6 - воздушная заслонка; 7 - диффузор; 8 - дроссельная заслонка

Простейший карбюратор состоит из: поплавковой камеры, поплавка с игольчатым запорным клапаном, распылителя, смесительной камеры, диффузора, воздушной и дроссельной заслонок, топливных и воздушных каналов с жиклерами.

Как же все-таки готовится горючая смесь? При движении поршня в цилиндре от верхней мертвой точки к нижней (такт впуска), над ним создается разрежение. Поток воздуха через воздушный фильтр и карбюратор, устремляется в освободившийся объем цилиндра. При прохождении воздуха через карбюратор, из поплавковой камеры через распылитель, который расположен в самом узком месте смесительной камеры – диффузоре, высасывается топливо. Это происходит по причине разности давлений в поплавковой камере карбюратора, которая связана с атмосферой, и в диффузоре, где создается значительное разрежение. Поток воздуха дробит вытекающее из распылителя топливо и смешивается с ним. На выходе из диффузора происходит окончательное перемешивание бензина с воздухом, и затем уже готовая горючая смесь поступает в цилиндры.

Из схемы работы простейшего карбюратора (см. рис.6.4.) можно понять, что двигатель не будет работать нормально, если уровень топлива в поплавковой камере выше нормы, так как в этом случае бензина будет выливаться больше, чем надо. Если же уровень бензина будет меньше нормы, то и его содержание в смеси будет меньше, что опять нарушит правильную работу двигателя. Исходя из этого, количество бензина в камере должно быть неизменным. Уровень топлива в поплавковой камере карбюратора регулируется специальным поплавком, который, опускаясь вместе с игольчатым запорным клапаном, позволяет бензину поступать в камеру. Когда же поплавковая камера начинает наполняться, поплавок всплывает и закрывает своим клапаном проход для бензина.

Дроссельная заслонка, посредством рычагов или троса, связана с ручкой управления двигателем. В исходном положении заслонка закрыта. при открытии дроссельной заслонки, поток воздуха, проходящего через карбюратор, увеличивается. При этом, чем больше открывается дроссельная заслонка, тем больше высасывается топлива, так как повышаются объем и скорость потока воздуха, проходящего через диффузор и «высасывающее» разрежение увеличивается. При закрытии дроссельной заслонки, поток воздуха уменьшается, и в цилиндры поступает все меньше и меньше горючей смеси. Двигатель «теряет обороты», уменьшается крутящий момент двигателя. При полном закрытии дроссельной заслонки двигатель работает на холостом ходу, в карбюраторе есть свои каналы, по которым воздух все-таки может попасть под дроссельную заслонку, смешиваясь по пути с бензином (см.рис.6.5.).

Рис. 6.5. Схема работы системы холостого хода

1 - топливный канал системы холостого хода; 2 - топливный жиклер системы холостого хода; 3 - игольчатый клапан поплавковой камеры карбюратора; 4 - топливный жиклер; 5 - дроссельная заслонка; 6 - винт «качества» системы холостого хода; 7 - воздушный жиклер системы холостого хода; 8 - воздушная заслонка

При закрытой дроссельной заслонке воздуху не остается другого пути, кроме как проходить в цилиндры по каналу холостого хода. А по пути, он высасывает бензин из топливного канала и, смешиваясь с ним, опять же, превращается в горючую смесь. Почти готовая к «употреблению» смесь попадает в поддроссельное пространство, там окончательно перемешивается и затем поступает в цилиндры двигателя.

При запуске холодного двигателя используется ручка управления дроссельной заслонкой (ручка подсоса), которая управляетвоздушной заслонкой карбюратора. Если прикрывать эту заслонку (вытягивать на себя рукоятку «подсоса»), то будет увеличиваться разрежение в смесительной камере карбюратора. Вследствие этого топливо из поплавковой камеры начинает высасываться более интенсивно и горючая смесь обогащается, что необходимодля запуска холодного двигателя.

Горючая смесь называетсянормальной, если на одну часть бензина приходится 15 частей воздуха (1:15). Это соотношение может меняться в зависимости от различных факторов, и соответственно будет менятьсякачество смеси. Если воздуха будет больше, то смесь называетсяобедненной или бедной. Если же воздуха меньше –обогащенной или богатой. Обедненная и бедная смеси - это голодная пища для двигателя, в ней топлива меньше нормы. Обогащенная и богатая смеси – слишком калорийная пища, так как топлива в ней больше, чем надо.

Представляет собой целый комплекс устройств. Основной задачей становится не просто подача топлива к инжекторным форсункам, а еще и подача горючего под высоким давлением. Давление необходимо для высокоточного дозированного впрыска в камеру сгорания цилиндра. Система питания дизеля выполняет следующие важнейшие функции:

  • дозирование строго определенного количество топлива с учетом нагрузки на двигатель в том или ином режиме его работы;
  • эффективный впрыск топлива в заданный промежуток времени с определенной интенсивностью;
  • распыление и максимально равномерное распределение горючего по объему камеры сгорания в цилиндрах дизельного ДВС;
  • предварительная фильтрация топлива перед подачей горючего в насосы системы питания и инжекторные форсунки;

Большинство требований к системе питания дизельного мотора выдвигается с учетом того, что дизельное топливо имеет ряд специфических особенностей. Горючее такого рода представляет собой смесь керосиновых и газойлевых соляровых фракций. Дизельное топливо получают после того, как из нефти реализуется отгон бензина.

Дизельное топливо обладает целым рядом свойств, главным из которых принято считать показатель самовоспламеняемости, который оценивается цетановым числом. Представленные в продаже виды дизельного топлива имеют цетановое число на отметке 45–50. Для современных дизельных агрегатов наилучшим топливом является горючее с большим показателем цетанового числа.

Система питания дизельного ДВС обеспечивает подачу хорошо очищенного дизельного топлива к цилиндрам, ТНВД сжимает горючее до высокого давления, а форсунка подает его в распыленном на мельчайшие частицы виде в камеру сгорания. Распыленное дизельное топливо смешивает с горячим (700–900 °С) воздухом, который нагревается до такой температуры от высокого сжатия в цилиндрах (3–5 МПа) и самовоспламеняется.

Обратите внимание, рабочая смесь в дизельном моторе не поджигается отдельным устройством, а воспламеняется самостоятельно от контакта с разогретым воздухом под давлением. Эта особенность сильно отличает дизельный ДВС от бензиновых аналогов.

Дизельное топливо имеет еще и более высокую плотность сравнительно с бензином, а также обладает лучшей смазывающей способностью. Не менее важной характеристикой выступает вязкость, температура застывания и чистота дизельного топлива. Температура застывания позволяет делить топливо на три базовых сорта горючего: .

Схема устройства системы питания дизельного ДВС

Система питания дизельного двигателя состоит из следующих базовых элементов:

  1. топливный бак;
  2. фильтры грубой очистки дизтоплива;
  3. фильтры тонкой очистки топлива;
  4. топливоподкачивающий насос;
  5. топливный насос высокого давления (ТНВД);
  6. инжекторные форсунки;
  7. трубопровод низкого давления;
  8. магистраль высокого давления;
  9. воздушный фильтр;

Дополнительными элементами частично становится электронасосы, выпуск отработанных газов, сажевые фильтры, глушители и т.д. Систему питания дизельных ДВС принято делит на две группы топливной аппаратуры:

  • дизельная аппаратура для повода топлива (топливоподводящая);
  • дизельная аппаратура для подвода воздуха (воздухоподводящая);

Топливоподводящая аппаратура может иметь различное устройство, но сегодня наиболее распространена система разделенного типа. В такой системе топливный насос высокого давления (ТНВД) и форсунки реализованы в виде отдельных устройств. Топливо подается в дизельный двигатель по магистралям высокого и низкого давления.

Дизельное топливо хранится, фильтруется и подается к ТНВД под невысоким давлением посредством магистрали низкого давления. В магистрали высокого давления ТНВД поднимает давление в системе для осуществления подачи и впрыска строго определенного количества топлива в рабочую камеру сгорания дизельного двигателя в заданный момент.

В системе питания дизеля присутствуют сразу два насоса:

  • топливоподкачивающий насос;
  • топливный насос высокого давления;

Топливоподкачивающий насос обеспечивает подачу топлива из топливного бака, прокачивает горючее через фильтр грубой и тонкой очистки. Давление, которое создает топливоподкачивающий насос, позволяет осуществить подачу топлива по топливопроводу низкого давления к топливному насосу высокого давления.

ТНВД реализует подачу топлива к форсункам под высоким давлением. Подача происходит в соответствии с порядком работы цилиндров дизельного мотора. Топливный насос высокого давления имеет определенное количество одинаковых секций. Каждая из таких секций ТНВД соответствует определенному цилиндру дизельного двигателя.

Существует также система питания дизельных двигателей неразделенного типа и применяется на дизельных двухтактных двигателях. В такой системе топливный насос высокого давления и форсунка объединены в одном устройстве под названием насос-форсунка.

Данные моторы работают жестко и шумно, имеют небольшой срок службы. В конструкции их системы питания отсутствуют топливопроводы магистрали высокого давления. Указанный тип ДВС не имеет большого распространения.

Вернемся к массовой конструкции дизельного мотора. Дизельные форсунки располагаются в головке блока цилиндров () дизельного двигателя. Основной их задачей становится точное распыление горючего в камере сгорания двигателя. Топливоподкачивающий насос подает к ТНВД большое количество топлива. Получившиеся избытки горючего и проникающий в систему топливоподачи воздух возвращаются в топливный бак по специальным трубопроводам, которые называются дренажными.

Инжекторные дизельные форсунки бывают двух видов:

  • дизельная форсунка закрытого типа;
  • дизельная форсунка открытого типа;

Четырехтактные дизельные моторы преимущественно получают форсунки закрытого типа. В таких устройствах сопла форсунки, которые представляют собой отверстие, закрываются особой запорной иглой.

Получается, что внутренняя полость, расположенная внутри корпуса распылителей форсунок, сообщается с камерой сгорания только во время открытия форсунки и в момент впрыска дизельного топлива.

Ключевым элементом в конструкции форсунки выступает распылитель. Распылитель получает от одного до целой группы сопловых отверстий. Именно эти отверстия и образуют факел топлива в момент впрыска. От их количества и расположения зависит форма факела, а также пропускная способность форсунки.

Система питания турбодизеля

Завоздушивание топливной системы дизеля: признаки неисправности и диагностика. Как самостоятельно найти место подсоса воздуха, способы решения проблемы.
  • Конструкция дизельного топливного насоса высокого давления, потенциальные неисправности, схема и принцип работы на примере устройства системы топливоподачи.


  • Главным предназначением топливной системы автомобиля являются подача топлива из бака, фильтрация, образование горючей смеси и подача ее в цилиндры. Существует несколько типов топливных систем для . Самая распространенная в 20-ом веке была карбюраторная система подачи смеси топлива. Следующим этапом стало развитие впрыска топлива при помощи одной форсунки, так называемый моновпрыск . Применение этой системы позволило уменьшить расход топлива. В настоящее время используется третья система подачи топлива – инжекторная . В этой системе топливо под давлением подается непосредственно в впускной коллектор. Количество форсунок равно количеству цилиндров.

    инжекторный и карбюраторный вариант

    Устройство топливной системы

    Все cистемы питания двигателя похожи , отличаются только способами смесеобразования. В состав топливной системы входят следующие элементы:

    1. Топливный бак , предназначен для хранения топлива и представляет собой компактную емкость с устройством забора топлива (насос) и, в некоторых случаях, элементами грубой фильтрации.
    2. Топливопроводы представляют собой комплекс топливных трубок, шлангов и предназначены для транспортировки топлива к устройству смесеобразования.
    3. Устройства смесеобразования (карбюратор, моновпрыск, инжектор ) – это механизм в котором происходит соединение топлива и воздуха (эмульсии) для дальнейшей подачи в цилиндры в (такт впуска).
    4. Блок управления работой устройства смесеобразования (инжекторные системы питания) – сложное электронное устройство для управления работой топливных форсунок, клапанов отсечки, датчиков контроля.
    5. Топливный насос , обычно погружной, предназначен для закачивания топлива в топливопровод. Представляет собой электродвигатель, соединенный с жидкостным насосом, в герметичном корпусе. Смазывается непосредственно топливом и длительная эксплуатация с минимальным количеством топлива, приводит к выходу из строя двигателя . В некоторых двигателях топливный насос крепился непосредственно к двигателю и приводился в действие вращением промежуточного вала, или распредвала.
    6. Дополнительные фильтры грубой и тонкой очистки . Установленные фильтрующие элементы в цепь подачи топлива.

    Принцип работы топливной системы

    Рассмотрим работу всей системы в целом. Топливо из бака всасывается насосом и по топливопроводу через фильтры очистки подается в устройство смесеобразования. В карбюраторе топливо попадает в поплавковую камеру, где потом через калиброванные жиклеры подается в камеру смесеобразования. Смешавшись с воздухом смесь через дроссельную заслонку поступает в впускной коллектор. После открытия впускного клапана подается в цилиндр. В системе моно впрыска топливо подается на форсунку, которая управляется электронным блоком. В нужное время форсунка открывается, и топливо попадает в камеру смесеобразования, где, как и в карбюраторной системе смешивается с воздухом. Дальше процесс такой же, как и в карбюраторе.

    В инжекторной системе топливо подается к форсункам, которые открываются управляющими сигналами от блока управления. Форсунки соединены между собой топливопроводом, в котором всегда находится топливо. Во всех топливных системах существует обратный топливопровод, по нему сливается излишек топлива в бак.

    Система питания дизельного двигателя похожа на бензиновую. Правда, впрыск топлива происходит непосредственно в камеру сгорания цилиндра, под большим давлением. Смесеобразование происходит в цилиндре. Для подачи топлива под большим давлением применяется насос высокого давления (ТНВД).

    Системы питания бензиновых и дизельных двигателей значительно отличаются, поэтому рассмотрим их по отдельности. Итак, что такое система питания автомобиля ?

    Система питания бензинового двигателя

    Системы питания бензиновых двигателей бывают двух типов - карбюраторная и впрысковая (инжекторная). Поскольку на современных автомобилях карбюраторная система уже не применяется ниже рассмотрим лишь основные принципы ее работы. При необходимости вы легко сможете найти дополнительную информацию по ней в многочисленных специальных изданиях.

    Система питания бензинового двигателя , независимо от типа двигателя внутреннего сгорания, предназначена для хранения запаса топлива, очистки топлива и воздуха от посторонних примесей, а также подачи воздуха и топлива в цилиндры двигателя.

    Для хранения запаса топлива на автомобиле служит топливный бак. На современных автомобилях применяются металлические или пластмассовые топливные баки, которые в большинстве случаев расположены под днищем кузова в задней части.

    Систему питания бензинового двигателя можно условно разделить на две подсистемы - подачи воздуха и подачи топлива. Что бы ни случилось, в любой ситуации наши специалисты по выездной тех помощи на дорогах москвы приедут и окажут необходимую помощь.

    Система питания бензинового двигателя карбюраторного типа

    В карбюраторном двигателе система подачи топлива работает следующим образом.

    Топливный насос (бензонасос) подает топливо из бака в поплавковую камеру карбюратора. Топливный насос, обычно мембранный, расположен непосредственно на двигателе. Привод насоса осуществляется при помощи штока-толкателя эксцентриком на распределительном валу.

    Очистка топлива от загрязнений совершается в несколько этапов. Самая грубая очистка происходит сеточкой на заборнике в топливном баке. Затем топливо фильтруется сеточкой на входе в бензонасос. Также сетчатый фильтр-отстойник установлен на входном патрубке карбюратора.

    В карбюраторе очищенный воздух из воздушного фильтра и бензин из бака смешиваются и подаются во впускной трубопровод двигателя.

    Карбюратор устроен таким образом, чтобы обеспечить оптимальное соотношение воздуха и бензина в смеси. Это соотношение (по массе) составляет приблизительно 15 к 1. Топливовоздушная смесь с таким соотношением воздуха к бензину называется нормальной.

    Нормальная смесь необходима для работы двигателя в установившемся режиме. На других режимах двигателю могут потребоваться топливовоздушные смеси с иным соотношением компонентов.

    Обедненная смесь (15-16,5 частей воздуха к одной части бензина) имеет меньшую скорость сгорания по сравнению с обогащенной, но зато происходит полное сгорание топлива. Обедненная смесь применяется при средних нагрузках и обеспечивает высокую экономичность, а также минимальный выброс вредных веществ.

    Бедная смесь (более 16,5 частей воздуха к одной части бензина) горит очень медленно. На бедной смеси могут возникать перебои в работе двигателя.

    Обогащенная смесь (13-15 частей воздуха к одной части бензина) обладает наибольшей скоростью сгорания и используется при резком увеличении нагрузки.

    Богатая смесь (менее 13 частей воздуха к одной части бензина) горит медленно. Богатая смесь необходима при пуске холодного двигателя и последующей работе на холостом ходу.

    Для создания смеси, отличной от нормальной, карбюратор снабжен специальными устройствами - экономайзер, ускорительный насос (обогащенная смесь), воздушная заслонка (богатая смесь).

    В карбюраторах разных систем эти устройства реализованы по-разному, поэтому здесь мы не будем рассматривать их более подробно. Суть просто в том, что система питания бензинового двигателя карбюраторного типа содержит такие конструктивные элементы.

    Для изменения количества топливовоздушной смеси и, следовательно, частоты вращения коленчатого вала двигателя служит дроссельная заслонка. Именно ею управляет водитель, нажимая или отпуская педаль газа.

    Система питания бензинового двигателя инжекторного типа

    На автомобиле с системой впрыска топлива водитель тоже управляет двигателем посредством дроссельной заслонки, но на этом аналогия с карбюраторной системой питания бензинового двигателя заканчивается.

    Топливный насос расположен непосредственно в баке и имеет электропривод.

    Электробензонасос обычно объединен с датчиком уровня топлива и сетчатым фильтром в узел, получивший название топливный модуль.

    На большинстве впрысковых автомобилей топливо из топливного бака под давлением поступает в сменный топливный фильтр.

    Топливный фильтр может быть установлен под днищем кузова либо в моторном отсеке.

    Топливные трубопроводы подсоединяются к фильтру резьбовыми или быстросъемными соединениями. Соединения уплотнены кольцами из бензостойкой резины или металлическими шайбами.


    В последнее время многие автопроизводители стали отказываться от применения подобных фильтров. Очистка топлива производится только фильтром, установленным в топливном модуле.

    Замена такого фильтра не регламентирована планом технического обслуживания.

    Системы впрыска топлива бывают двух основных типов - центральный впрыск топлива (моновпрыск) и распределенный впрыск, или, как его еще называют, многоточечный.

    Центральный впрыск стал для автопроизводителей переходным этапом от карбюратора к распределенному впрыску и на современных автомобилях применения не находит. Это связано с тем, что система центрального впрыска топлива не позволяет выполнить требования современных экологических стандартов.

    Агрегат центрального впрыска похож на карбюратор, только вместо смесительной камеры и жиклеров внутри установлена электромагнитная форсунка, которая открывается по команде электронного блока управления двигателем. Впрыск топлива происходит на вход впускного трубопровода.

    В системе распределенного впрыска количество форсунок равно количеству цилиндров.

    Форсунки установлены между впускным трубопроводом и топливной рампой. В топливной рампе поддерживается постоянное давление, которое обычно составляет около трех бар (1 бар равен примерно 1 атм). Для ограничения давления в топливной рампе служит регулятор, который стравливает излишки топлива обратно в бак.

    Раньше регулятор давления устанавливали непосредственно на топливной рампе, а для соединения регулятора с топливным баком использовалась обратная топливная магистраль. В современных системах питания бензинового двигателя регулятор располагают в топливном модуле и необходимость в обратной магистрали отпала.

    Топливные форсунки открываются по командам электронного блока управления, и происходит впрыск топлива из рампы во впускной трубопровод, где топливо смешивается с воздухом и поступает в виде смеси в цилиндр.

    Команды на открытие форсунок вычисляются на основании сигналов, поступающих от датчиков электронной системы управления двигателем. Тем самым обеспечивается синхронизация работы системы подачи топлива и системы зажигания.

    Система питания бензинового двигателя инжекторного типа обеспечивает большую производительность и возможность соответствия более высоким экологическим стандартам, чем карбюраторного.

    Похожие статьи